데이터의 정제를 완료하면 모델을 통해 데이터를 학습하고 타겟 값을 예측한다. 머신러닝에 있어서 모델의 성능을 높이기 위해서 가장 중요한 작업은 데이터를 모델에 맞게 정제하는 과정이라고 생각한다. 그 다음으로는 모델의 파라미터 값을 조정하여 성능을 높이는 방법이 있다. 모델에 따라 수 많은 파라미터들이 존재하기 때문에, 사람이 모든 값을 하나씩 바꿔가며 실험하는 것은 많은 노력과 인력을 필요로 한다. 사이킷 런에서는 모델의 파라미터를 설정할 때, 사람이 일정 값을 설정해주면 모델이 그 조합들을 자동적으로 조합하여 실험을 실행시키는 메서드를 제공하는데 그것이 바로 GridSearchCV 이다. greedy 알고리즘은 최적해를 구하는 데에 사용되는 근사적인 방법으로, 여러 경우 중 하나를 결정해야 할 때마다 ..