* 본 포스팅은 머신러닝교과서를 참조하여 작성되었습니다. 5.1 주성분 분석을 통한 비지도 차원 축소 특성 선택 vs 특성 추출 - 원본 특성을 유지한다면 특성 선택 - 새로운 특성 공간으로 데이터를 변환하거나 투영한다면 특성 추출 특성 추출은 대부분의 관련 있는 정보를 유지하면서 데이터를 압축하는 방법이다. 이는 저장 공간을 절약하거나 학습 알고리즘의 계산 효율성을 향상시키고 차원의 저주(curse of dimensionality) 문제를 감소시켜 예측 성능을 향상시키기도 한다. 5.1.1 주성분 분석의 주요 단계 PCA : 비지도 선형 변환 기법 PCA를 많이 사용하는 애플리케이션에는 탐색적 데이터 분석과 주식 거래 시장의 잡음 제거, 생물정보학 분야에서 게놈(genome) 데이터나 유전자 발현(ge..